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The Project
Restoring Native Prairie



Semi-native Pasture

✤ 35 acres in eastern South Dakota

✤ Northern 10 acres contains variable terrain 
and a diverse mix of native grasses and 
forms. 

✤ Southern 10 acres has little diversity, large 
patches of non-native grasses.

✤ The goal is to reintroduce native varieties 
from north to south.



Determine percent germination of harvests of 10 different native species (plus 2 checks)

The Experiment
Seed Germination Assay



Trial Map
Since this is effectively a greenhouse trial (Jiffy Professional 
Seed Starting Greenhouse), I did not need to randomize as a 
complete block design.

However, I knew the kit would be placed next to a window, 
creating a natural light gradient. To account for this, I 
randomized the trial as an RCB.



Trial Quality

✤ Replicate Shape

✤ Treatment Dispersion



Trial Quality

✤ Replicate Shape

✤ Suggested Block Size

✤ Treatment Dispersion



✤ As Executed

✤ 2x6 (Better?)

✤ 3x4 (Best?)

Trial Quality

✤ Replicate Shape

✤ Suggested Block Size

✤ How will this affect trial map quality?

✤ Treatment Dispersion



A bit of review
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(ȳ∘j − ȳ∘∘)
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Calculating Replicate Means
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Calculating Replicate Means
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Intuitively,	it	seems	that	3x4	block	size	may	be	preferable	to	1x12	block	size.	Can	we	test	this?



Simulation



Simulated Uniformity Trials

✤ Start with a uniformity trial (from many available in the literature)

✤ Copy plot assessments to a proposed randomization

✤ Analyze as if this were an actual trial

✤ Since there is no actual treatments, we expect P(>Ftrt) to be large. 

✤ If treatments are confounded with a spatial trend we may get a significant P(>Ftrt)

✤ How often do significant P(>Ftrt) occur over uniform cropland data?



Mercer and Hall

✤ Mercer, W. B. and Hall, A. D. 1911. The 
experimental error of field trials. The 
Journal of Agricultural Science. 4 (2), pp. 
107-132

✤ The magnitude of experimental error attaching to one or more field plots 
is a question of extreme importance in Agricultural Science, because 
upon its proper recognition depends the degree of confidence which 
may be attached to the results obtained in field work. A very cursory 
examination of the results of any set of field trials will serve to show that 
a pair of plots similarly treated may be expected to yield considerably 
different results, even when the soil appears to be uniform and the 
conditions under which the experiment is conducted are carefully 
designed to reduce errors in weighing and measurement.



Simulated Trial

See H. M. van Es and C. L. van Es. (1993) Spatial nature of randomization and its effect on the 
outcome of field experiments. Agron J, 85:420–428 for something similar



Simulated Uniformity Trials

✤ Repeat a single randomization over multiple samples from uniformity 
trials.

✤ In the absence of a true treatment effect, we expect to detect significance (at 
5% probability) in about 5% of the trials.

✤ We can compare the observed distribution of p-values over multiple 
uniformity trials with the expected distribution. 



Simulated Trial (1:2)



Simulated Trial (2:1)



Simulated Trial (2:1)



Visualization

✤ Histogram
✤ Shows the frequency (or proportion) of 

observed values.
✤ In this case, the observed values are p-

values

✤ empirical Cumulative Distribution
✤ Cumulative frequency (or proportion) of 

observed values.
✤ Interpret this as the probability of an 

observed treatment p-value < nominal 
p-value



Visualization

✤ Histogram
✤ We see, over this uniformity data, fewer 

trials than expected that find significant 
treatment effects.

✤ empirical Cumulative Distribution
✤ Observed treatment p-values tend to be 

fewer than expected, for any critical 
value.



Comparison

✤ Repeat simulation with alternate 
randomizations.
✤ Some plans have more convex curves, 

suggesting better control of Type I error 
rates.

✤ Other trials have concave curves, 
suggesting higher rate of Type I error.



Type I Error

✤ Recall, we are inferring plot yields from uniformity trial data.

✤ There are no treatments applied in uniformity trials; these trials are established to study 
spatial variation under agricultural trial conditions

✤ The null hypothesis is, a priori, true for all simulated trials. We expect to fail to reject 
the null hypothesis at predefined nominal rate (i.e. 5%).

✤ For some randomizations, we fail to reject the null hypothesis in more trials than 
expected; thus, we achieve a greater Type I error rate than our nominal rate.

✤ What increases Type I error?



Undesirable Randomization
Trial was manually editing to group treatments in columns.



Undesirable 
Randomization
✤ Treatments aligned in columns are more 

likely to be confounded with spatial 
trends.

✤ If spatial variation is significant across 
columns, then we expect this to suggest 
significant treatment effects.



Undesirable 
Randomization
✤ While this is a valid randomization, it is an 

unlikely randomization



Undesirable 
Randomization
✤ While this is a valid randomization, it is a 

very unlikely randomization



Undesirable 
Randomization
✤ While this is a valid randomization, it is an 

extremely unlikely randomization



Back to Block 
Dimensions



Back to Block Dimensions

✤ We can use uniformity simulations to understand how replicate shape may 
influence Type I error rates

✤ We compare three block shapes:

1 x 12 2 x 6 3 x 4



Block Dimensions

✤ It will not be particularly informative to consider the distribution of 
simulated trials for any single randomization

1 x 12 2 x 6 3 x 4



Block Dimensions

✤ But we can consider the quality of multiple (30) randomizations

1 x 12 2 x 6 3 x 4



Block Dimensions

✤ But we can consider the quality of multiple (100) randomizations

1 x 12 2 x 6 3 x 4



Block Dimensions

✤ More uniform block dimensions lead to more uniform Type I error rates 
across possible randomizations.

1 x 12 2 x 6 3 x 4



What about power?



What about power?

✤ Recall that we can have two types of error of inference:

✤ Type I error (false positive) occurs when we reject a true null hypothesis

✤ But we also want to control for Type II error (false negative), when we reject 
fail to reject then null hypothesis when there is a true treatment effect.

✤ We tend to focus on the former, but we should not ignore that latter when 
designing an experiment.



What about power?

✤ Planning experiments to achieve a desired power (say, 80%) is supported in 
ARM, but would be a topic for another day.

✤ Instead, we consider the implications of a randomization with greater or 
lesser simulated Type I on the corresponding Type II error.

✤ That is, we can also simulate the proportion of trials that detect true 
treatment differences added to uniformity data.



Power Simulations

✤ Start with a uniformity trial (from many available in the literature)

✤ Copy plot assessments to a proposed randomization

✤ Select treatment and add a percentage (Percent Mean Difference) to the plot 
assessments, from the prior test, for that treatment only

✤ Analyze as if this were an actual trial; continue over entire uniformity data as before.

✤ Increase Percent Mean Difference and repeat

✤ Do this for each treatment in turn



Simulated Trial

+ 3% (Trial Mean)



Add a percent …



… and analyze



A picture is worth a 
thousand words.

✤ Recall the original simulation distribution:

✤ and compare to a series of trials with an 
added treatment effect ranging from 3-27 
Percent Mean Difference



A picture is worth a 
thousand words.

✤ Recall the undesirable randomization:

✤ and remember that when we have a true 
treatment effect, we expect a greater 
number of trials to have significant 
treatment p-values.



A picture is worth a 
thousand words.

✤ Our goal is to approximate a Percent Mean 
Difference that gives us significant 
treatment values at our desired statistical 
power

✤ In this case, that occurs at about a 22% 
Mean Difference. 



A caveat

✤ Statistical power as suggested by these 
simulations should not be interpreted as 
exactly the power used in planning 
experiments.



A caveat

✤ The Power and Efficiency table for this 
design would suggest a Percent Mean 
Difference of ~20 is detectable with 80% 
power.



A caveat

✤ But we find that by holding the Coefficient 
of Variance constant at 12%. In the 
simulated trials, CV can vary over different 
parts of the field.



A caveat

✤ Further, we base power calculations on the 
two sample t-test, while simulations derive 
p-values from the treatment F-test.



Block Dimensions



Block Dimensions

✤ Simulations, then, may give us insight into the impact of block dimensions on trial outcomes

1 x 12 2 x 6 3 x 4



Block Dimensions

✤ Simulations, then, may give us insight into the impact of block dimensions on trial outcomes

1 x 12 (%MD ~ 22) 2 x 6 (%MD ~ 21) 3 x 4 (%MD ~ 20)



Data Sources

✤ For these simulations, I’ve used data from 
the R library ‘agridat’ 

✤ Kevin Wright 
https://cran.r-project.org/web/packages/
agridat/index.html



Uniformity Data Sources (agridat)

mercer.wheat.uniformity (182) wiebe.wheat.uniformity (238) correa.soybean.uniformity (504)

gomez.rice.uniformity (180) odland.soybean.uniformity (946) piepho.barley.uniformity (540)

Repeated Randomizations and Number of Trials



Uniformity Data Sources (agridat)

mercer (%MD ~ 22) wiebe (%MD ~ ?) correa (%MD ~ ?)

gomez (%MD ~ 14) odland (%MD ~ 24) piepho (%MD ~ 15)

Power Analysis and Approximate Mean Difference at 80%



Uniformity Data Sources (agridat)

mercer : CV ~ 11 (8-14) wiebe : CV ~ 14 (7-24) correa : CV ~ 27 (20-35)

gomez : CV ~ 7 (5-9) odland : CV ~ 12 (7-18) piepho : CV ~ 7 (4-11)

Coefficient of Variance for Plans and Simulations



Other Sources

✤ It’s relatively easy to use published 
uniformity trial data, but there are some 
conditions
✤ There may not be data sources similar to 

your crops or your field conditions
✤ Uniformity trials may not have been 

conducted using your plot and buffer 
dimensions

✤ Yield monitor data may be adapted for use 
as uniformity data



Yield Monitor Data

✤ Fit a statistical model to yield monitor data 
(gam)

✤ Project predicted yields onto a trial map, 
using the plot centers

✤ Repeat this over the entire map, and over 
individual maps from multiple years



Yield Monitor Data

✤ Given a field of ~ 600m x 360m, and a trial 
a trial of 72 plots, 6 rows by 12 columns, 
4x6 m plots with 0.5 and 1 m buffers, we 
can fit 8x10 trials per year over 4 years for 
320 (non-overlapping) simulated trials

✤ I’ve used this in the past to explore ARM 
randomization options, but this will be 
more difficult to include as an ARM 
feature.

https://gdmdata.com/media/documents/handouts/2016ASA_OptimalTreatmentDispersions.pdf



Yield Monitor Data

✤ Simulating uniformity trials and power 
analysis with yield monitor data in R 
allows me to compare many different 
randomizations at once, with better 
separation of statistical power.

✤ I can create as many trials, without 
overlap

✤ But, these take a very long time (hours), so 
may not yet provide a general solution.
https://gdmdata.com/media/documents/handouts/2016ASA_OptimalTreatmentDispersions.pdf



Future Discussions

✤ This feature may become a tool for
✤ validating randomization not generated 

by ARM
✤ visualizing the uniformity of 

randomizations across multiple trials
✤ understanding restricted 

randomizations (adjacency, spatially 
balanced designs)



Trial Quality

✤ Replicate Shape

✤ Treatment Dispersion



✤ Replicate Shape

✤ Treatment Dispersion

Trial Quality



Thanks  
and  
Good-day
For now, saving the discussion of ADTC for our next visit.



PS

✤ All the trial maps shown so far were 
randomized by ARM.

✤ What if we get a trial map that was not 
created using ARM? Can we check the 
quality of the randomization?



An ad hoc Experiment

✤ Part of this project involves producing 
seed bombs - individual seeds encased in 
a marble-size portion of dirt/clay mix.

✤ Seeds bombs may also include seed 
treatments - fertilizer, biologicals, growth 
regulators.

✤ I want to test the effectiveness of 
different seed bomb formulations in 
establishing seedlings without 
cultivation.



An ad hoc Experiment

✤ In one trial, I compared the base seed bomb 
mix (control) and the seed bomb mix with 
added commercial product
✤ Dr Earth Flower Girl Organic & Natural Hand 

Crafted Blend Bud & Bloom Booster

✤ I coated 5 commercial varieties of sunflower 
with both mixes, for a 2x5 factorial design.

✤ I didn’t carefully count the total number of 
seeds per treatment and wasn’t of the size 
of my available land, so I didn’t plan the 
trial map until I arrived in the field.



An ad hoc Experiment

✤ I finally decided on 5 replicates of 10 plots 
each, and seeding plots by moving through 
the trial at random.

✤ I then entered the trial map into ARM.

✤ How good was my randomization?



Looks good?



Could be better?

✤ I did not consider dispersion of the most 
important factor (A - seed bomb treatment)

✤ These treatments were not particularly 
well dispersed.

✤ Could I have improved this with planning?



Variations on Factorial

✤ Consider, for example, a split-plot 
randomization, with seed bomb treatment 
as the subplot (B) factor.

✤ We lose some accuracy in comparing 
varieties (now factor A, at the whole plot 
level), but these comparisons are 
inherently less interesting. 

✤ I included varieties mainly to test for 
interaction with seed treatment, and not 
for variety main effect.

as Split-Plot as Factorial



Future developments

✤ Can we apply the treatment dispersion 
metrics and randomization criteria 
(adjacency or spatially balanced) to factor 
levels within factorial designs?



One last picture


