Using the Colby Equation in ARM

Utilize ARM Standard Evaluations to assess synergistic or antagonistic responses with the Colby Equation．

Setting up the Treatments

－Open Treatments editor
－Enter Untreated Check as Treatment 1
－Enter Product A and B as singular products for Treatments 1 and 2
－Use last treatment as combination of A and B（with same rates as individually）

Trt Line	Trt No．	Type	Treatment Name	Form Conc	Form Unit	Form Type	Rate	Rate Unit
1	1	CHK	UTC					
2	2	HERB	Product A	100	$\mathrm{~g} / \mathrm{L}$	SL	50	$\mathrm{~g} \mathrm{AI} / \mathrm{ha}$
3	3	HERB	Product B	150	$\mathrm{~g} / \mathrm{L}$	SL	75	$\mathrm{~g} \mathrm{AI} / \mathrm{ha}$
4	4	HERB	Product A	100	$\mathrm{~g} / \mathrm{L}$	SL	50	$\mathrm{~g} \mathrm{AI} / \mathrm{ha}$
5	4	HERB	Product B	150	$\mathrm{~g} / \mathrm{L}$	SL	75	$\mathrm{~g} \mathrm{Al} / \mathrm{ha}$

Standard Evaluations

COLBY COUNT

1．In SE Definitions editor，select Colby Count for SE Name field
2．Fill in Part Rated fields
3．Click Build Headers button in Properties Panel
－Choose Replace OR Update
4．Open Assessment Data header in trial
5．Enter pest count for each plot in Column 1 ［C1］
6．ARM calculates expected value［C2］using ARM Action Code Tn（user－defined \rightarrow see below）and data from［C1］

Tn Calculation：

AVGREP（［C1T2］）＊AVGREP（［C1T3］）／＠AVGREP（［C1TU］）

7．Average the count for each replicate of Treatment 4
－If AVGREP［C1T4］＜C2，combination is synergetic（＋）
－If AVGREP［C1T4］＞C2，combination is antagonistic（－）
－If AVGREP［C1T4］＝C2，combination is additive

Example：

AVGREP［C1T2］$=28.75$
AVGREP［C1T3］＝ 27.5
AVGREP［C1TU］$=77.5$
$(28.75 * 27.5) / 77.5=10.2$
The Colby Equation calculates an expected 10.2 weeds per plot after applying Treatment 2 and Treatment 3.

$$
\text { AVGREP[C1T4] = } 15
$$

Treatment 4 resulted in an average of 15 weeds per plot．

$$
15 \text { (plants) > } 10.20 \text { (plants) }
$$

The treatments combined are less effective than expected， implying antagonism．

Assessment Data－Line 55								
Column Number						1		2 （Calculat
Pest Type						W \downarrow Weed		W \downarrow Weed
Pest Code						1 KCHG	\checkmark	1 KCHG
Pest Scientific Name						Kochia	\checkmark	Kochia
Pest Name						Kochia	\checkmark	Kochia
Crop Type，Code						C TRZAS	，	C TRZAS
BBCH Scale						BCER		BCER
Crop Scientific Name						Triticum aestivum	\checkmark	Triticum aestivum
Crop Name						Spring wheat	\checkmark	Spring wheat
SE Name						COLBY COUNT		COLBY COUNT
SE Description						Count rating for Colby：\checkmark		Colby Interaction forı \downarrow
Part Rated						PLANT \checkmark P		PLANT \checkmark P
Rating Type						COUNT		COLCNT
Rating Unit／Min／Max						NUMBER \checkmark	\checkmark	NUMBER \checkmark
ARM Action Codes							\checkmark	T1 N
＋Sub	Rep	Blk	Col	Plot	$\begin{aligned} & T r t \\ & 1 \end{aligned}$	1		2 （Calculated）
鲑 1	1	1	1	101		80		10.20
荗 1	2	2	3	203	1	75		10.20
囲 1	3	3	4	304	1	85		10.20
\＆ 1	4	4	1	401	1	70		10.20
\％ 1	1	1	2	102	2	30		10.20
1	2	2	1	201	2	25		10.20
1	3	3	2	302	2	30		10.20
1	4	4	3	403	2	30		10.20
1	1	1	4	104	3	25		10.20
1	2	2	2	202	3	25		10.20
1	3	3	3	303	3	30		10.20
1	4	4	2	402	3	30		10.20
1	1	1	3	103	4	15		10.20
1	2	2	4	204	4	$\begin{aligned} & 20 \\ & 10 \end{aligned} 7$		10.20
1	3	3	1	301	4			10.20
1	4	4	4	404	4	15		10.20

Using the Colby Equation in ARM

COLBY \% OF CTRL

1. In SE Definitions editor, select COLBY \% OF CTRL for SE Name field
2. Fill in Part Rated fields
3. Click Build Headers button in Properties Panel

- Choose Replace OR Update

4. Open the Assessment Data header in the trial
5. Enter the pest incidence \% for each plot in Column 3 [C3] (UTC $=100 \%$)
6. Calculate the expected $\%$ of control using ARM Action Code $T n$ (user-defined \rightarrow see below) and data from [C3]

Tn Calculation: @AVGREP([C3T2])*@AVGREP([C3T3])/@AVGREP([C3TU])
7. Average the count for each replicate of Treatment 4.

- If AVGREP[C3T4] < C4, combination is synergetic (+)
- If AVGREP[C3T4] > C4, combination is antagonistic (-)
- If AVGREP[C3T4] = C4, combination is additive

Example:

$$
\text { AVGREP[C3T2] = } 52.5
$$

$$
\text { AVGREP[C3T3] = } 70
$$

$(52.5 * 70) / 100=36.75$
The Colby Equation calculates an expected 36.75% weed coverage of the plot after applying Treatment 2 and Treatment 3.

$$
\text { AVGREP[C3T4] = } 17.5
$$

Treatment 4 resulted in an average of 17.5% of the plot still covered in weeds.
$17.5<36.75$
The treatments combined are more effective than expected, implying synergy.

Using the Colby Equation in ARM

COLBY \% CONTROL

1. In SE Definitions editor, select COLBY \% CONTROL for SE Name field
2. Fill in Part Rated fields
3. Click Build Headers button in Properties Panel

- Choose Replace OR Update

4. Open the Assessment Data header in the trial
5. Enter the \% control rating for each plot in Column 5 [C5] (UTC $=0$)
6. Calculate the expected \% of control using ARM Action Code $T n$ (user-defined \rightarrow see below) and data from [C5]

Tn Calculation: 100-(((100-@AVGREP([C5T2]))*(100-@AVGREP([C5T3])))/100)
7. Average the \% control rating for each of the replicates of Treatment 4 (Product $A+B$)

- If AVGREP[C6T4] > C6, combination is synergetic (+)
- If AVGREP[C6T4] < C6, combination is antagonistic (-)
- If AVGREP[C6T4] = C6, combination is additive

Example:

AVGREP[C5T2] $=47.5$

$$
\text { AVGREP[C5T3] = } 52.5
$$

100-(((100-47.5)*(100-52.5))/100) 100-((52.5*47.5)/100) $100-24.9375=75.0625$
The Colby Equation calculates an expected control of 75.06% of the weeds in the plot.

$$
\text { AVGREP }[C 5 T 4]=75.5
$$

Treatment 4 resulted in an average of 75.5% of weeds controlled in the plot.
$75.5>75.0625$
The treatments combined are more effective than expected, implying synergy.

