Exploring Treatment By Trial Interaction Using Treatment Stability/Trial Dendrogram Plots

Peter Claussen, Steve Gylling Gylling Data Management, Inc. Booth #1020

Software Overview

Single trial management and analysis

- ARM ST
 - Summarizes ARM trials across locations and years
 - Treatment x trial analysis
 - New in 2015 is the Treatment x Trial graph

Treatment x Trial Graph

Stability

November 2015

(colorblind-safe palette - bconnelly.net/2013/10/creating-colorblind-friendly-figures/)

3

- Treatment x trial means represented as a matrix, with trials in rows.
 - Each trial is a single multivariate response comprised of individual treatment means within trials.

$$\left(\begin{array}{c} \vec{y}_{1} \\ \vec{y}_{2} \\ \vdots \\ \vec{y}_{m} \end{array} \right) = \left(\begin{array}{c} \left(\vec{y}_{11}, \vec{y}_{12}, \dots, \vec{y}_{1n} \right) \\ \left(\vec{y}_{21}, \vec{y}_{22}, \dots, \vec{y}_{2n} \right) \\ \vdots \\ \left(\vec{y}_{m1}, \vec{y}_{m2}, \dots, \vec{y}_{mn} \right) \end{array} \right)$$

- Similarity between rows (trials) is computed using the R function dist()
 - The R default is Euclidean distance.

$$\|\vec{y}_{1} - \vec{y}_{2}\| = \left(\left(\vec{y}_{11} - \vec{y}_{12}\right)^{2} + \left(\vec{y}_{21} - \vec{y}_{22}\right)^{2} + \dots + \left(\vec{y}_{n1} - \vec{y}_{n3}\right)^{2}\right)^{\frac{1}{2}}$$

• The result is a matrix with pairwise similarity measures

$$\begin{aligned} \|\vec{y}_{1} - \vec{y}_{2}\| & \|\vec{y}_{1} - \vec{y}_{3}\| & \dots & \|\vec{y}_{1} - \vec{y}_{m}\| \\ \|\vec{y}_{2} - \vec{y}_{1}\| & \|\vec{y}_{2} - \vec{y}_{3}\| & \dots & \|\vec{y}_{2} - \vec{y}_{m}\| \\ \|\vec{y}_{3} - \vec{y}_{1}\| & \|\vec{y}_{3} - \vec{y}_{2}\| & \dots & \|\vec{y}_{3} - \vec{y}_{m}\| \\ \vdots & \vdots & \vdots & \vdots \\ \|\vec{y}_{m} - \vec{y}_{1}\| & \|\vec{y}_{m} - \vec{y}_{2}\| & \|\vec{y}_{m} - \vec{y}_{3}\| & \dots \end{aligned}$$

- Hierarchical clusters produced using the R hclust()function.
 - Each item (leaf) is first given its own cluster
 - Proceeding iteratively, the nearest pair of clusters are joined until there is a single cluster
- Dendrogram is plotted by drawing lines linking clusters, where the distance of the link from the leaves is proportional to similarity between clusters

Leaves are typically reordered to prevent crossing of branches.

The ARM ST trial dendrogram constrains leaves to be aligned with trial means in the stability plot

Types of interaction

How does the dendrogram relate to interaction?

 Some interactions arise when treatment differences tend to diverge or converge with increasing trial means

November 2015

(Data from South Dakota Crop Performance Trials, Winter Wheat, 2007) 8

Types of interaction

 Other interactions arise when some treatments perform inconsistently across trials

Treatment Stability and Trial Clusters for Grand Mean 1

Treatment x trial means

Treatment x trial means can be written as the sum of

$$\overline{y}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\theta}_{ij}$$

- Grand mean
- *t* treatment effect
- \mathcal{B}_{φ} trial effect
 - treatment x trial interaction

Trial similarity

When distances are computed from treatment in trial means, treatment effects cancel and the distance is based on trial effect and treatment x trial interaction.

$$\begin{split} \vec{y}_{.1} - \vec{y}_{.2} &= \left(\overline{y}_{11} - \overline{y}_{12}, \overline{y}_{21} - \overline{y}_{22}, \dots, \overline{y}_{n1} - \overline{y}_{n2} \right) \\ &= \begin{pmatrix} \left(\hat{\mu} + \hat{\alpha}_{1} + \hat{\beta}_{1} + \hat{\theta}_{11} \right) - \left(\hat{\mu} + \hat{\alpha}_{1} + \hat{\beta}_{2} + \hat{\theta}_{12} \right), \\ \left(\hat{\mu} + \hat{\alpha}_{2} + \hat{\beta}_{1} + \hat{\theta}_{21} \right) - \left(\hat{\mu} + \hat{\alpha}_{2} + \hat{\beta}_{2} + \hat{\theta}_{22} \right), \\ \vdots \\ \left(\hat{\mu} + \hat{\alpha}_{n} + \hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\mu} + \hat{\alpha}_{n} + \hat{\beta}_{2} + \hat{\theta}_{n2} \right) \end{split} \\ &= \begin{pmatrix} \left(\hat{\beta}_{1} + \hat{\theta}_{11} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{12} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{21} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{22} \right), \\ \vdots \\ \left(\hat{\mu} + \hat{\alpha}_{n} + \hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\mu} + \hat{\alpha}_{n} + \hat{\beta}_{2} + \hat{\theta}_{n2} \right) \end{pmatrix} \\ &= \begin{pmatrix} \left(\hat{\beta}_{1} + \hat{\theta}_{11} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{22} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right) \end{pmatrix} \\ &= \begin{pmatrix} \left(\hat{\beta}_{1} + \hat{\theta}_{11} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{22} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right) \end{pmatrix} \\ &= \begin{pmatrix} \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right) \end{pmatrix} \\ &= \begin{pmatrix} \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{2} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n1} \right) - \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right) - \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right) - \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right) - \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right), \\ \left(\hat{\beta}_{1} + \hat{\theta}_{n2} \right) - \left(\hat{\beta}_{1}$$

Trial similarity, no interaction

 If interaction is absent, the similarity between two trials is proportional to the difference between trial effects only.

$$\vec{y}_{.1} - \vec{y}_{.2} = \begin{pmatrix} (\hat{\beta}_1 + 0) - (\hat{\beta}_2 + 0) \\ (\hat{\beta}_1 + 0) - (\hat{\beta}_2 + 0) \\ \vdots \\ (\hat{\beta}_1 + 0) - (\hat{\beta}_2 + 0) \end{pmatrix} = \begin{pmatrix} \hat{\beta}_1 - \hat{\beta}_2 \\ \hat{\beta}_1 - \hat{\beta}_2 \\ \vdots \\ \hat{\beta}_1 - \hat{\beta}_2 \end{pmatrix}$$
$$\|\vec{y}_{.1} - \vec{y}_{.2}\| = \begin{pmatrix} n(\hat{\beta}_1 - \hat{\beta}_2)^2 \end{pmatrix}^{\frac{1}{2}}$$

Decomposition of Interaction

Simple additivity

$$\boldsymbol{\theta}_{11} = \boldsymbol{\theta}_{12} = \ldots = \boldsymbol{\theta}_{nm} = \boldsymbol{0}$$

- Random effect
 - $\theta_{ij} \sim N(0, \sigma_{\theta}^2)$
- Nonadditivity

$$\bullet \quad \theta_{ij} = \lambda \alpha_i \beta_j + \varepsilon_{ij}$$

Tukey 1949

Heterogeneous Slopes (Stability)

$$\bullet \quad \theta_{ij} = \lambda_i \beta_j + \varepsilon_{ij}$$

Mandel 1961

Other decompositions

Milliken and Johnson 1989, Cornelius, et al., 2001

Reference Dendrogram

 To illustrate the effects on interaction on a treatment x trial dendrogram, produce a reference dendrogram based on additive treatment and trial effects only

$$\vec{y}_{.1} - \vec{y}_{.2} = \left(\vec{y}_{.1} - \vec{y}_{.2}, \vec{y}_{.2}, \vec{y}_{.2}, \vec{y}_{.2}, \cdots, \vec{y}_{.n}, -\vec{y}_{.n2} \right)$$

$$= \begin{pmatrix} \left(\hat{\mu} + \hat{\alpha}_{1} + \hat{\beta}_{1} \right) - \left(\hat{\mu} + \hat{\alpha}_{1} + \hat{\beta}_{2} \right) \\ \left(\hat{\mu} + \hat{\alpha}_{2} + \hat{\beta}_{1} \right) - \left(\hat{\mu} + \hat{\alpha}_{2} + \hat{\beta}_{2} \right) \\ \vdots \\ \left(\hat{\mu} + \hat{\alpha}_{n} + \hat{\beta}_{1} \right) - \left(\hat{\mu} + \hat{\alpha}_{n} + \hat{\beta}_{2} \right) \end{pmatrix} = \begin{pmatrix} \left(\hat{\beta}_{1} \right) - \left(\hat{\beta}_{2} \right) \\ \left(\hat{\beta}_{1} \right) - \left(\hat{\beta}_{2} \right) \\ \vdots \\ \left(\hat{\beta}_{1} \right) - \left(\hat{\beta}_{2} \right) \end{pmatrix}$$

Simple Additivity

Simple Additivity

Reference dendrogram is nearly identical to the treatment x trial dendrogram

Random Effect

Treatment Stability and Trial Clusters for Grand Mean 1

November 2015

Source

Total

Trial

Random Effect

Interaction is present, but interaction effects cancel and dendrogram is preserved

Legend Means₄ Trials ^ 24 SampleRCBDMokwa 46.9 12 SampleRCBDDamongo 52.2 16 SampleRCBDGwoza 53.3 15 SampleRCBDEjura 54.3 23 SampleRCBDKishi 54.6 28 SampleRCBDSaminaka 54.8 29 SampleRCBDSekou 55 14 SampleRCBDEjiba 55.5 18 SampleRCBDlkenne1 55.9 21 SampleRCBDIna 56 31 SampleRCBDWa 56.3 19 SampleRCBDlkenne2 56.8 25 SampleRCBDMokwa2 56.8 26 SampleRCBDNyankpala 56.8 35 SampleRCBDZaria2 56.8 7 SampleRCBDBagou 56.9 20 SampleRCBDIlorin 57.6 27 SampleRCBDOkeovi 57.9 1 SampleRCBDKatibougou 58.5 9 SampleRCBDBirninKudu 58.8 4 SampleRCBDAngaradebou 59.4 30 SampleRCBDTsafe 59.6 22 SampleRCBDKadawa 59.7 3 SampleRCBDZuru 59.8 13 SampleRCBDDania 59.8 E Camalan Chonada 50.0

Nonadditivity

Treatment Stability and Trial Clusters for Grand Mean 4

November 2015

Source

Treatment

Total

Trial

Nonadditivity

Treatment in Trial Mean

Major clusters, relative to trial means, are preserved

	Trials	Means≞	^
8	SampleRCBDBallah	0.5	
10	SampleRCBDDalabani	0.6	
5	SampleRCBDBadeggi	1	
13	SampleRCBDDanja	1.1	
16	SampleRCBDGwoza	1.2	
36	SampleRCBDZaria2	1.3	
29	SampleRCBDSekou	1.4	
32	SampleRCBDWa	1.4	
21	SampleRCBDIna	1.6	
31	SampleRCBDTumu	1.8	
11	SampleRCBDDamboa	2	
24	SampleRCBDMokwa	2	
4	SampleRCBDAngaradebou	2.6	
6	SampleRCBDBagauda	2.7	
15	SampleRCBDEjura	2.7	
28	SampleRCBDSaminaka	2.7	
35	SampleRCBDZaria1	3.2	
2	SampleRCBDKetou	3.3	
20	SampleRCBDIIorin	3.3	
7	SampleRCBDBagou	3.5	
19	SampleRCBDIkenne2	3.5	
1	SampleRCBDKatibougou	3.8	
9	SampleRCBDBirninKudu	3.8	
12	SampleRCBDDamongo	3.9	
22	SampleRCBDKadawa	3.9	
30	SampleRCBDTsafe	4	
14	SampleRCBDEjiba	4.1	~

Complex Interaction

Lege	Legend		
	Trials	Means	*
11	EVT16B9	2652.22248744444	
2	EVT16B3	2936.44473808888	
18	EVT16B17	3229.44476738888	
1	EVT16B1	3612.66702793334	
19	EVT16B18	4027.77818055556	
12	EVT16B11	4209.44486538888	
10	EVT16B8	4551.44489958888	
13	EVT16B12	4837.44492818888	
9	EVT16B6	4876.77826545556	
16	EVT16B15	4955.11160662222	
20	EVT16B20	4970.66716373334	
- 7	EVT16B4	5048.88939377778	
14	EVT16B13	5105.11162162222	
15	EVT16B14	5230.11163412222	
3	EVT16B19	5307.22275294444	
8	EVT16B5	5406.0005406	
6	EVT16B2	6052.11171632222	
17	EVT16B16	6305.44507498888	
5	EVT16B7	6332.33396656666	
4	EVT16B10	7516.66741833333	

from Cornelius et al., 1997)

Complex Interaction

Complex Interaction

Treatment Stability and Trial Clusters for Grand Mean 1

Reference dendrogram shows how interaction distorts treatment x trial dendrogram

Future Directions

- Different decompositions
 - Linear-bilinear models (i.e. AMMI, SHMM)
- Clustering methods and comparison of dendrograms
- Automated analysis of trial groups
- Covariate analysis
 - Use trial specific data to explain interaction
 - Geospatial maps

Thank You

References

- www.gdmdata.com
- J Tukey. One degree of freedom for non-additivity. Biometrics, 5(3):232–242, 1949
- J Mandel. Non-additivity in the two-way analysis of variance. Journal of the American Statistical Association, 56(296), 1961.
- G Milliken, and D Johnson. *Analysis of messy data volume 2: nonreplicated experiments*. Vol. 1. CRC Press, 1989.
- P Cornelius, J Crossa, M Seyedsadr, G Liu, and K Viele. Contributions to multiplicative model analysis of genotype-environment data. Proceedings of the Annual Meeting of the American Statistical Association, 2001
- R Littell, G Milliken, W Stroup, and R Wolfinger. *SAS system for mixed models*. SAS Institute, Cary, NC., 1996.
- P Cornelius, J Crossa, and M Seyedsadr. Statistical tests and estimators of multiplicative models for genotype-by-environment interaction. In. M Kang and H Gauch. *Genotype-by-environment interaction*. CRC Press, 1996.
- M Vargas, E Combs, G Alvarado, G Atlin, K Mathews, and J Crossa. META: A suite of SAS programs to analyze multienvironment breeding trials. Agronomy Journal, 105(1):11, 2013
- http://igrow.org/agronomy/wheat/winter-wheat-variety-trial-results/