Optimal Treatment Dispersions in
Rectangular Areas

Fael Clelssen
Gylling Data Management



» Credit for the phrase “experiments In
rectangular areas’ goes to R A. Bailley, who

frequently uses the term “undesirable” layout.

"Experiments in rectangular areas: design and randomization.” Journal

of Agricultural, Biological, and Environmental Statistics | /.2 (2012):
| 76-191.

* What Is an undesirable layout! Let us consider
the effects of different layouts on simulated
uniformity trials.



Simulated Uniformity Trials

Yield Monitor Data
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Simulated Uniformity Data

Converted Yield Monitor Data
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Simulated Repeated Irial Map

» Generate a trial map

« RCB, 6 treatments and 4

replicates.
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Latitude (m)

Yield Monitor and Kriged Data Points
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* Interpolate yield at center of plot by kriging yield

monitor data. Boxes represent plot borders.



| 80 Simulated Uniformity Irials

Kriged Plot Means

Repeat for all layouts and analyze

o
'

each as a different uniformity trial =========
e * EEEEEEa
EETEE AN .
Fach trial samples a different part e
of a large spatial structure, . ===§===== et (oxtiece)
= §ERSESES |-
VWe can compare how different 2 EE!===II- 200
randomizations detect spatial S 5 _,,-.--=== o '
ariation o SESESEEEE
BEER W Er
- “undesirable” ========a
Or our purposes, “undesir T
layouts will confound spatial ENIEELE T

variability with treatment effects. 0 100 200 300
Longitude (m)



Types of Confounding
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lype | Error

* Since there are no real treatment effects, analysis of variance of a uniformity
trial should produce a non-significant p-value for the Treatment F statistic.

» At a nominal error rate of 5%, we can expect | out of 20 trials to achieve a
Treatment p<0.05.

* In 180 simulated trials, the example RCB produced 26 trials with Treatment
EERIES o an achieved error rate of |4.44%.

* We can visualize this by plotting the distribution of p-values for these |30

iGEEs.



Distribution of Treatment over 180 RCB Simulations
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Distribution of Treatment p-values.

For an unbiased trial, we would expected the distribution of p-values to be approximately
uniform. This set of trials has a greater than expected number of small p-values.




ECDF of Treatment p over 180 RCB Simulations
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Empirical Cumulative Distribution

Same data as previous graph, but plotted as the total count
of trials at or less than the nominal probability on the x-axis.




ECDF of Treatment p over 180 RCB Simulations
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Empirical Cumulative Distribution

The diagonal line represents a uniform distribution, where the accumulated
proportion of trials at a nominal probability equals that probability.




ECDF of Treatment p over 180 RCB Simulations
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Empirical Cumulative Distribution

The ECDF at a nominal probability of 0.05 has an accumulated proportion of 0. 144,
implying the achieved Type | error rate is higher than the nominal error rate.




Comparing Different
Randomizations

» We've focused on a single RCB experiment, repeated |30
times.

» [his layout achieved a higher Type | error rate, 14.4%, than
our nominal rate of 5%.

» This might simply be bad luck - the randomization we chose
[ERlincesirable .

» We'll repeat the simulation with | | other RCB layouts.



12 RCB Layouts

2

Lo I -
N -

Treatment

- N MO v unu
® ® ® 00 O

9 0
W~

~

'
o 0O
N -

(w) apnye

12

1"

10

-8
‘TTT

2000
2000 &
e

T TY B

-8
o oo

20

Longitude {m)

10

30

2000
Y11
Y11}
se00
TYI B
TI1L
1L

90
N -

Iwelve Proposed Layouts

Number | is the layout shown previously



ECDF of Treatment p for 12 RCB Layouts
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[reatment p Distributions

Some layouts are biased towards smaller p-values, some
are biased towards larger p-values.



SImple Restricted Randomization

12 RCB Layouts
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Comparative Error Rates
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Comparative Error Rates
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Comparative Error Rates
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Large Sample Theory

Combined treatment p for increasing numbers of RCB layouts, simulated over |80
experiments. As the number of trials increases. the distribution of p becomes uniform.
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In these data, the null hypothesis is true. Uniformity implies that the probability
of rejecting the null hypothesis Is exactly equal to any chosen critical p-value.



Restricted Randomization

How can we control for undesirable layouts!

The universe of potential randomized complete block layouts includes
some that place multiple plots with the same treatment in close proximity.

Researchers might recognize and reject these designs out of hand, and re-
randomize.

This I1s an Informal method of restricted randomization.

Several systematic restricted randomizations have been proposed.



Systematic Restricted
Randomization

Degenerate

unrandomized

Randomized Complete Block

unrestricted randomization

Restricted Adjacency

ARM setting = number of columns between identical treatments in adjacent blocks
Super-valid
for each pair of rows, a single treatment may appear twice in the same column

Row-column
Latin Rectangle

Spatially-Balanced

spatial balance among treatment contrasts



Column Restrictions

Degenerate

treatment number same as column number

Randomized Complete Block

any treatment may be applied to any column in a block

Restricted Adjacency

treatments not allowed to appear in the same column in adjacent blocks
Super-valid
no treatment may appear more than twice in the same column

Row-column

no treatment may appear more than once in the same column

Spatially-Balanced

no treatment may appear more than once in the same column



cxample Randomizations

6 Sample Layouts
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Classes of Layouts

To compare the different classes of restricted randomization schemes, |2 instances of
each were created.

Classic Fisher randomization allows independent randomization of treatments in each
block, as previously described.

New adjacency layouts were recreated by independent randomizations with the same
setting (treatment adjacency=2).

The properties of row-column and super-valid designs allow new layouts to be
produced by independently permuting (swapping) rows and columns.

Spatially-optimal layouts are optimized for average distance between treatments in rows,
so permutations are limited to swapping rows only.



ECDF of Treatment p for 12 Layouts of 6 Classes
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Probability Distributions, |2 Layouts

Restricted randomization tends to exclude designs that
produce left-skewed distributions.



ECDF of Treatment p for 12 Layouts of 6 Classes
Adjacency 2
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Probability Distributions, |2 Layouts

Super-valid designs, which allow two treatments to appear
in the same columns, tend to be centrally distributed.



ECDF of Treatment p for 12 Layouts of 6 Classes
Adjacency 2
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Probability Distributions, |2 Layouts

Spatially balanced designs, which are generated by row-permutations
only, are a more homogeneous class of randomization.



Pooled ECDF of Treatment p for 12 Layouts of 6 Classes
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Pooled Distributions, |2 layouts Each

Row-column, spatially balanced and restricted adjacency
show similar tendencies away from smaller p-values



Pooled ECDF of Treatment p for 12 Layouts of 6 Classes
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Pooled Distributions, |2 Layouts Each

At a nominal probability of 0.50, the super-valid layouts
tend toward an achieved rate of 0.50.



Power Analysis

» Different layouts may produce achieved lype | error rates that

are much lower than nominal error:

* However, planning experiments requires a compromise
petween lype | rates (detecting significance where none In
present) and lype |l error rates (overlooking a true treatment

difference).

* We can also attempt to simulate lype Il error and compare
classes of restricted randomization.




Simulating lype Il Error Rates

» Simulating Type | Error rates using uniformity data Is
straight forward. Since there Is no treatment effect, any
trial detecting significance can be counted as an error.

EEReic icrmine [ype |l error rates, we need o acaid

“true’” effect, and count the number of trials that fail to
detect significance.

e But what Is a true effect!



Simulating lype Il Error Rates

« Jo determine a true effect, we start with a small value, ~ 1% of the

orand mean, add this value to a single treatment, perform AQOV and
check treatment p.

* Do this for each treatment (of 6), and each location (of |180) in our
field.

* | we haven't detected significance In at least 864 trials (80% of |80 x
6), Increment our effect value and repeat.

* [his gives an estimate of effect size required to achieve 80% power.



ECDF of Treatment p over Step Size 1%
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Incrementing Effect Size

S Increment effect size for a single RCB tralwesses
the Treatment p distribution shifted toward the left.
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Incrementing Effect Size

True effects shift treatment p distribution to the left



ECDF of Treatment p over Step Size 1%
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Incrementing Effect Size

Remember, null treatment effects confounded with spatial
effects also shifted treatment p distributions to the left.



Distribution of Effects to Achieve 80% Significance
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Pooled Power Analysis

An unrandomized layout Is almost certain to detect very
small treatment effects as significant,



density

Distribution of Effects to Achieve 80% Significance
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Pooled Power Analysis

Layouts that tend toward lower lype | error rates require larger
absolute treatment effects (~ |/ bu/acre) to achieve a desired power.



Distribution of Effects to Achieve 80% Significance
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Recommended Replicates

» |t we suspect that a layout has a
tendency to low p-values, would
we use the same number of
replicates!

» |t we suspect that a layout has a
tendency to require larger
treatment effects, would we use
the same number of replicates!

» Given an arbitrary layout, can we
predict these tendencies!

Pooled ECDF of Treatment p for 12 Layouts of 6 Classes
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Average Distance of Ireatment
Comparison

* van Es and van Es,“Spatial Nature of Randomization and Its Effect on
the Outcome of Field Experiments™, Agron |, 85:420-428 (1993).

» Comparison between treatments | and 2 1s made from data taken
from 4 plots for each treatment.

» Measure the plot-to-plot distance for each plot containing treatment

| to the paired plot, within replicates, containing treatment 2, for a
total of 4 distances.

« ADTC for the treatment pair |-2 Is the average of the 4 distances.
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The average distance for the contrast between

treatments | and 2 1s computed by averaging the linear distances
between plot centers, including plot width (4m) and buffer space

(0.om)




Average Dispersion

To provide an estimate of how well a treatment Is dispersed
relative all other treatments, compute the average of ADTC for
all comparisons including that treatment.

Contrasts including Treatment |

N el = 10,125 ADIECH 8= ey DI (s = 7075
IG5 = 4,625 ADTC I-6 = 15.75
Average Distance, Ireatment | Contrasts = | .25

B clord Deviation, Treatment | Contrasts = 3./3



Summarizing ADTC

Standard Deviation of Average Distances = 0.6 |

o x

Treatment

Lye Dist.
113

Average of Standard Deviations

wo choices for a single value summarizing ADTC



Distances, [reatments [-2,
Across Replicates

Measure dispersion by computing AD T C with distances across
replicates as well as within replicates.



Treatment Dispersion and Type | Error
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