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• Credit for the phrase “experiments in 
rectangular areas” goes to R. A. Bailey, who 
frequently uses the term “undesirable” layout.

• "Experiments in rectangular areas: design and randomization." Journal 
of Agricultural, Biological, and Environmental Statistics 17.2 (2012): 
176-191.

• What is an undesirable layout? Let us consider 
the effects of different layouts on simulated 
uniformity trials.



Simulated Uniformity Trials

• Start with yield monitor 
data.

• South East Research 
Station, Beresford SD

• 2013

• Maize



Simulated Uniformity Data

• Trim to remove end-rows 
and edges

• Convert longitude and 
latitude coordinates to 
meters, relative to south-
west corner. 



Simulated Repeated Trial Map

• Generate a trial map

• RCB, 6 treatments and 4 
replicates.

• Superimpose over field, 
starting in lower left corner 
and adding trials in rows 
and columns



Estimated Plot Yields
• Interpolate yield at center of plot by kriging yield 

monitor data. Boxes represent plot borders.



180 Simulated Uniformity Trials

• Repeat for all layouts and analyze 
each as a different uniformity trial.

• Each trial samples a different part 
of a large spatial structure.

• We can compare how different 
randomizations detect spatial 
variation.

• For our purposes, “undesirable” 
layouts will confound spatial 
variability with treatment effects.



Types of Confounding
Significant Replicate Non-Significant Replicate

Significant 
Treatment

Non-
Significant 
Treatment



Type I Error

• Since there are no real treatment effects, analysis of variance of a uniformity 
trial should produce a non-significant p-value for the Treatment F statistic.

• At a nominal error rate of 5%, we can expect 1 out of 20 trials to achieve a 
Treatment p<0.05.

• In 180 simulated trials, the example RCB produced 26 trials with Treatment 
p < 0.05, for an achieved error rate of 14.44%.

• We can visualize this by plotting the distribution of p-values for these 180 
trials.



Distribution of Treatment p-values.
For an unbiased trial, we would expected the distribution of p-values to be approximately 

uniform.  This set of trials has a greater than expected number of small p-values.



Empirical Cumulative Distribution
Same data as previous graph, but plotted as the total count 
of trials at or less than the nominal probability on the x-axis.



Empirical Cumulative Distribution
The diagonal line represents a uniform distribution, where the accumulated 

proportion of trials at a nominal probability equals that probability.



Empirical Cumulative Distribution
The ECDF at a nominal probability of 0.05 has an accumulated proportion of 0.144, 

implying the achieved Type I error rate is higher than the nominal error rate.



Comparing Different 
Randomizations

• We’ve focused on a single RCB experiment, repeated 180 
times.

• This layout achieved a higher Type I error rate, 14.4%, than 
our nominal rate of 5%. 

• This might simply be bad luck - the randomization we chose 
is “undesirable”.

• We’ll repeat the simulation with 11 other RCB layouts.



Twelve Proposed Layouts
Number 1 is the layout shown previously



Treatment p Distributions 
Some layouts are biased towards smaller p-values, some 

are biased towards larger p-values.



Simple Restricted Randomization
• Which of these layouts would 

you reject out of hand as 
being potentially biased?

• If you would reject any, you 
are practicing a form of 
restricted randomization.

• This can be inefficient, since it 
may require many 
randomizations to achieve a 
desired layout.



Comparative Error Rates
Layout Type I Error Rate

1 14.44
2 5.00
3 1.67
4 2.22
5 8.33
6 0.56
7 2.22
8 2.22
9 1.11
10 6.11
11 5.55
12 32.8

Mean 6.85
SD 9.05
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Large Sample Theory
Combined treatment p for increasing numbers of RCB layouts, simulated over 180 

experiments. As the number of trials increases. the distribution of p becomes uniform.



Large Sample Theory
In these data, the null hypothesis is true. Uniformity implies that the probability 
of rejecting the null hypothesis is exactly equal to any chosen critical p-value.



Restricted Randomization

• How can we control for undesirable layouts?

• The universe of potential randomized complete block layouts includes 
some that place multiple plots with the same treatment in close proximity.

• Researchers might recognize and reject these designs out of hand, and re-
randomize. 

• This is an informal method of restricted randomization.

• Several systematic restricted randomizations have been proposed.



Systematic Restricted 
Randomization

• Degenerate
• unrandomized

• Randomized Complete Block
• unrestricted randomization

• Restricted Adjacency
• ARM setting = number of columns between identical treatments in adjacent blocks

• Super-valid
• for each pair of rows, a single treatment may appear twice in the same column

• Row-column 
• Latin Rectangle

• Spatially-Balanced
• spatial balance among treatment contrasts 



Column Restrictions
• Degenerate

• treatment number same as column number

• Randomized Complete Block
• any treatment may be applied to any column in a block 

• Restricted Adjacency
• treatments not allowed to appear in the same column in adjacent blocks

• Super-valid
• no treatment may appear more than twice in the same column

• Row-column 
• no treatment may appear more than once in the same column

• Spatially-Balanced
• no treatment may appear more than once in the same column



Example Randomizations

• Degenerate
• Randomized 

Complete Block
• Row-column 
• Super-valid
• Restricted Adjacency
• Spatially-Balanced



Classes of Layouts
• To compare the different classes of restricted randomization schemes, 12 instances of 

each were created.

• Classic Fisher randomization allows independent randomization of treatments in each 
block, as previously described.

• New adjacency layouts were recreated by independent randomizations with the same 
setting (treatment adjacency=2).

• The properties of row-column and super-valid designs allow new layouts to be 
produced by independently permuting (swapping) rows and columns.

• Spatially-optimal layouts are optimized for average distance between treatments in rows, 
so permutations are limited to swapping rows only.



Probability Distributions, 12 Layouts
Restricted randomization tends to exclude designs that 

produce left-skewed distributions.



Probability Distributions, 12 Layouts
Super-valid designs, which allow two treatments to appear 

in the same columns, tend to be centrally distributed.



Probability Distributions, 12 Layouts
Spatially balanced designs, which are generated by row-permutations 

only, are a more homogeneous class of randomization.



Pooled Distributions, 12 layouts Each
Row-column, spatially balanced and restricted adjacency 

show similar tendencies away from smaller p-values



Pooled Distributions, 12 Layouts Each
At a nominal probability of 0.50, the super-valid layouts 

tend toward an achieved rate of 0.50.



Power Analysis
• Different layouts may produce achieved Type I error rates that 

are much lower than nominal error.

• However, planning experiments requires a compromise 
between Type I rates (detecting significance where none in 
present) and Type II error rates (overlooking a true treatment 
difference).

• We can also attempt to simulate Type II error and compare 
classes of restricted randomization.



Simulating Type II Error Rates
• Simulating Type I Error rates using uniformity data is 

straight forward. Since there is no treatment effect, any 
trial detecting significance can be counted as an error.

• To determine Type II error rates, we need to add a 
“true” effect, and count the number of trials that fail to 
detect significance.

• But what is a true effect?



Simulating Type II Error Rates
• To determine a true effect, we start with a small value, ~1% of the 

grand mean, add this value to a single treatment, perform AOV and 
check treatment p.

• Do this for each treatment (of 6), and each location (of 180) in our 
field. 

• If we haven’t detected significance in at least 864 trials (80% of 180 x 
6), increment our effect value and repeat.

• This gives an estimate of effect size required to achieve 80% power.



Incrementing Effect Size
As we increment effect size for a single RCB trial, we see 

the Treatment p distribution shifted toward the left.



Incrementing Effect Size
True effects shift treatment p distribution to the left.



Incrementing Effect Size
Remember, null treatment effects confounded with spatial 

effects also shifted treatment p distributions to the left.



Pooled Power Analysis
An unrandomized layout is almost certain to detect very 

small treatment effects as significant.



Pooled Power Analysis
Layouts that tend toward lower Type I error rates require larger 

absolute treatment effects (~17 bu/acre) to achieve a desired power.



Pooled Power Analysis
Super valid layouts offer a compromise between Type I and 

Type II error rates.



Recommended Replicates

• If we suspect that a layout has a 
tendency to low p-values, would 
we use the same number of 
replicates?

• If we suspect that a layout has a 
tendency to require larger 
treatment effects, would we use 
the same number of replicates?

• Given an arbitrary layout, can we 
predict these tendencies?



Average Distance of Treatment 
Comparison

• van Es and van Es, “Spatial Nature of Randomization and Its Effect on 
the Outcome of Field Experiments”, Agron J, 85:420-428 (1993).

• Comparison between treatments 1 and 2 is made from data taken 
from 4 plots for each treatment.

• Measure the plot-to-plot distance for each plot containing treatment 
1 to the paired plot, within replicates, containing treatment 2, for a 
total of 4 distances.

• ADTC for the treatment pair 1-2 is the average of the 4 distances.



Distances, Treatments 1-2

The average distance for the contrast between  
treatments 1 and 2 is computed by averaging the linear distances 
between plot centers, including plot width (4m) and buffer space 

(0.5m)



Average Dispersion
• To provide an estimate of how well a treatment is dispersed 

relative all other treatments, compute the average of ADTC for 
all comparisons including that treatment.

• Contrasts including Treatment 1
• ADTC 1-2 = 10.125 ADTC 1-3 = 7.875ADTC 1-4 = 7.875
• ADTC 1-5 = 14.625 ADTC 1-6 = 15.75

• Average Distance, Treatment 1 Contrasts = 11.25

• Standard Deviation, Treatment 1 Contrasts =  3.73



Summarizing ADTC

Average of Standard Deviations

Standard Deviation of Average Distances = 0.61

Two choices for a single value summarizing ADTC



Distances, Treatments 1-2,  
Across Replicates 

Measure dispersion by computing ADTC with distances across 
replicates as well as within replicates.



ADTC as a Predictor of Type I Error
12 trials of each class of restricted randomizations, along 

with 1000 unrestricted RCB layouts



Distribution of ADTC
Adjacency, row-column and spatially balanced 

randomizations tend toward low ADTC



Distribution of ADTC
Super valid layouts tend toward mean ADTC
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TL; DR
How do and

combine to produce

?


