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Beyond RCBD

» Statistical models for analysis beyond the
randomized complete block model.

 Experimental designs for blocking beyond the
randomized complete block design.




A Motivating Example

» Cochran, W. G. (1947). Some conseguences when
the assumptions for the analysis of variance are
not satisfied. Biometrics, 3( 1), 22—38.

» /. Effects of Correlations Amongst the Errors



Cochran (1947)

» Occasiondlly it may be discovered that the data have
been subject to some systematic pattern of
environmental variation that the randomization has
been unable to cope with. If the environmental
battern obviously masks the treatment effect, resort
may be had to what might be called desperate
remedies in order to salvage some information.
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An Instance of Correlated Error

A 2% factorial experiment in two replicates (lime, fish
manure, artificial fertilizers, one or two years application).
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Cochran (1947)

* [t is evident that the first row of plots is of poor fertility—treatments appearing in that row
have only about half the yields that they give elsewhere. Further, there are indications that
every row differs in fertility, the last row being second worst and the third row best. [he
fertility gradients are especially troublesome in that the four untreated controls all happen to
lie in outside rows. The two replications give practically identical totals and remove none of
the variation.
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Analysis of Variance

Randomized Complete Block (RCB) Least square estimation AOV For CHYCI Pyr
Source DF Sum of Squares Mean Square F Prob(F)
Total 31 8046621.875000

Replicate 1 65703.125000 65703.125000 0.291 0.5976
Treatment 154592071.875000,306133 125000 1.355 0.2818

Error 15 3388846.875000,225923.125000

The replicates remove so little variation that we would get a better
result analyzing the experiment as a completely random design.

Completely Random (Fully Randomized) Least square estimation AOV For CHYCI
Source DF Sum of Squares Mean Square F Prob(F)

Total 31 8046621.875000
Treatment 154592071.875000.306138 125000 1.418 0.2479
Error 16 3454550.000000 215909.375000 2018

In this case, a statistical model based on the design of the experiment is not the ‘best’ model.



Analysis of Variance

Randomized Complete Block (RCB) Least square estimation AOV For CHYCI Pyr
Source DF Sum of Squares Mean Square F Prob(F)
Total 31 8046621.875000

Replicate 1 65703.125000 65703.125000 0.291 | 0.5976
Treatment 154592071.875000 306138.125000T.355 0.2818
Error 15 3388846.875000 225923.125000 i
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The RCB model is not mathematically plausible!



Cochran (1947)

» [here is clearly little hope of obtaining information about the
treatment effects unless weights are adjusted for differences in
fertility from row to row. The adjustment may be made by
covariance.

» [ it were desired to adjust separately for every row, a multiple
covariance with four x variables could be computed. ... It will be
realized that the covariance technique, if misused, can lead to
underestimation of errors. It is, however, worth Keeping in mind as
an occasional weapon for difficult uses.



...an occaslonal weapon for

difficult uses.

* Where are my letters!

Crop Code CHYCI
Crop Name Pyrethrum
Part Rated HEAD -
Rating Unit g
Number of Subsamples 1
Trt Treatment
No. Name 1
101 940.0 -
01
2 02 1590.0 -
3 A1 1045.0 -
4 A2 965.0 -
5F1 1930.0 -
6 F2 1000.0 -
7 L1 890.0 -
8 L2 1805.0 -
9 FA1 1430.0 -
10 FA2 1750.0 -
11 LA1 1365.0 -
12 LA2 1930.0 -
13 LF1 1695.0 -
14 LF2 1275.0 -
15 LFA1 1995.0 -
16 LFA2 1620.0 -
LSD P=.05 985.04
Standard Deviation 464.66

Cv

32.01




...an occaslonal weapon for
difficult uses.

Crop Code CHYCI
Wh SIENAITC my |e_t_te I”S? Crop Narme Pyrethrum
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12 LA2 1930.0 -
13 LF1 1695.0 -
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16 LFA2 1620.0 -
LSD P=.05 985.04
Standard Deviation 464.66
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...an occaslonal weapon for

difficult uses.

* Where are my letters!

* You might have better mean
separation If you use d
different experimental layout
next time.

» (This is, we can offer a design-based
approach to account for spatial
heterogeneity)

Crop Code CHYCI
Crop Name Pyrethrum
Part Rated HEAD -
Rating Unit g
Number of Subsamples 1
Trt Treatment
No. Name 1
101 940.0 -
01
2 02 1590.0 -
3 A1 1045.0 -
4 A2 965.0 -
5F1 1930.0 -
6 F2 1000.0 -
7 L1 890.0 -
8 L2 1805.0 -
9 FA1 1430.0 -
10 FA2 1750.0 -
11 LA1 1365.0 -
12 LA2 1930.0 -
13 LF1 1695.0 -
14 LF2 1275.0 -
15 LFA1 1995.0 -
16 LFA2 1620.0 -
LSD P=.05 985.04
Standard Deviation 464.66
_CV 32.01
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12 LA2 1930.0 -
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Standard Deviation 464.66
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...an occaslonal weapon for

difficult uses.

* Where are my letters!

* You might have better mean
separation If you use d
different experimental layout
next time.

 But | want letters now!

* (This s, is there a model-based
approach to account for spatial
heterogeneity?)

Crop Code CHYCI
Crop Name Pyrethrum
Part Rated HEAD -
Rating Unit g
Number of Subsamples 1
Trt Treatment
No. Name 1
101 940.0 -
01
2 02 1590.0 -
3 A1 1045.0 -
4 A2 965.0 -
5F1 1930.0 -
6 F2 1000.0 -
7 L1 890.0 -
8 L2 1805.0 -
9 FA1 1430.0 -
10 FA2 1750.0 -
11 LA1 1365.0 -
12 LA2 1930.0 -
13 LF1 1695.0 -
14 LF2 1275.0 -
15 LFA1 1995.0 -
16 LFA2 1620.0 -
LSD P=.05 985.04
Standard Deviation 464.66
_CV 32.01




| etters Now

» Cochran’s occasional weapon for difficult uses Is a
rudimentary form of spatial analysis.

 He describes a method of inferring a spatially-varying

covarlate based on row mean.

- Many other methods for identifying a spatially varying

model have been proposed; we consider two general
classes.



Spatial Models

» Spatial analysis attempts to recover hidden spatial spatial
information. We can think of different degrees of scale or
coarseness of these measures. In the context of design trials,

these would be

» Global
* |dentify a spatial pattern encompassing the entire field.

* Local
* Analysis of effects in the space adjacent to individual plots.

For more detailed discussion, see e.g. Schabenberger & Pierce 2001 or Plant 2012



Extremes of Spatial Analysis

» Global (Trend Analysis)

» VWe model spatial variability over the entire

experiment as a uniformly varying trend.

» Local (Nearest Neighbor Analysis)

* VWe moc

effects of

el s
on

y T

batial variation by considering the

ne nearest neighbor plots.



Trend Analysis

One method to find a global R
pattern is to use polynomial < !
equations to Iinterpolate o g .
between points. e
As we Increase the order of a — o
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Trend Analysis

' yield=p
From top to bottom: o
. Row Mean it —
. Column Number
 Linear Trend yield = 1+ x
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Nearest Neighbor Analysis

Papadakis (1937) is credited with the first discussion of using residuals (from treatment
means) of neighbor plots as a covariate. There are several variations variations on his
method, all falling under the class of nearest neighbor analyses.

Nearest Column Neighbors Nearest Row Neighbors
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Nearest Row Neighbors

* We compute residuals from
treatment means (1.e. CRD

model), then find the
average of residuals from

neighbor plots.

* [his average becomes a
for plot effect.

covariate
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Different Experimental Layout

* |n this exam
too small to

* We can iImp
each whole

ple, spatial variability was found on a scale
be captured by replicates (whole blocks).

rove the resolution In blocking by dividing
block Into smaller; iIncomplete blocks.

* Incomplete block designs for field trials typically include
simple lattices (square, rectangle or alpha-lattices) or

row-column

attices (lattice squares).
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Incomplete Blocks

Fach replicate constitutes a whole block; rows in replicates
can be made Into iIncomplete blocks.




Designing for Spatial
Heterogenelty

owever, we can't simply analyze incomplete blocks from an

experiment executed as an RCB; we must plan for incomplete

blocking.

VWe estimate whole block effects by comparing a block average
against the grand mean. ['his Is an unbiased estimate when every

treatment Is represented In each block

VWhen blocks are incomplete, bloc
are confounded. We can recover
number of times treatments can a

<
D

D

effects and treatment effects
ock information, if we limit the

bear together In blocks.



Cochran 194/

Since this example was not
planned as a lattice design, there
are several treatments that appear
together In the same block more
than once.
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Options | Moverrert Arows | Trearment Descrption | Commery | Concurence | Qualty

This may introduce a bias in the
estimate of block effect
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&
0
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0

In this case If treatment |5 is
higher yielding than the other
treatments, then we might
underestimate the effect of
treatments 5 or |2,




Cochran 194/ as Lattice

* [he same treatment structure,
but randomized as a simple
square lattice.

401 g402 403 pg404 pgs01 pgs802 p803 Q804
= & 7 13 L 11 - L
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2 15 |9 1 15 10 16 3
201 g202 p203 pj204 g601 g602 pE03 RE04
16 11 6 8 6 14 7 9
101 g102 g103 g104 g501 go502 g503 RS04
12 10 5 14 12 2 13 |8

* Each treatment appears exactly

one or zero times with any i [ e Ao [ s oo G| Gororcs Qi
other treatment. T ; E

* [here still may be a bias Iin 6 011010010
block estimates, but : DONEE KO
randomization theory allows us : OO
to recover Information about k R
block variance. o




Design vs Model

- When faced with an experiment where the design falled to capture spatial

information, should we

* Make the best of the planned design analysis!

- Randomization theory allows us to make statements about cause-and-effect
when we analyze the experiment as designed.

* Attempt to find a spatial model that can be applied to this experiment?

» Modeling limits our abllity to discern cause-and-effect, but we may be able to
explain the experiment that happened.



Model Selection Problem

- [he original design may not always be the ‘best’ model,

but 1t will usually be an appropriate model.

 When we ¢

faced with t

etach our analysis from

ne problem of moc

el se

ectlo

the design, we are

N, and we need

to determine It a new model Is appropriat

c.

The mathematically implausible RCB model for this example is

appropriate, In the sense that the inflated error term (relative to CRD) Is

conservative, and understandable under randomization theory.



Model Selection Problem

rade off between bias (underfit) and discrepancy
(overtit)

Parameters
Fewer More



Treatment Residuals Treatment Residuals Treatment Residuals

Treatment Residuals

Principle of Parsimony
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Information Criteria

» Akaike (1971) considered that parameters in a linear model are typically
chosen to maximize the likelihood, and that log-likelihood is related to a
value termed the Kullback-Lelbler information number.

* He proposed An Information Criteria that included the number of

parameters k and the log-likelihood of the model, written as

AIC = 2k —21(B,67| ..., )

« We can simplify to
AIC =2k +nln(RSS)



AlC/BIC

+ AlC should be considered a badness-of-fit measure.

* A less-bad model reduces Residual SS, while a more-bad model increases
the number of parameters. I hus, the choice of model based on AlC s
smaller is better

AIC =2k + nlIn(RSS)

+ Other IC measures, such as the Bayesian |C, incur a different penalty
for parameters.

BIC =In(n)k + nln(RSS)



odel Is

Randomized Complete Block 225923 49706 52344
Completely Random 215909 495.68 520.59
Nearest Column Neighbors 230,104 497.65  524.03
Nearest Row Neighbors 155,257 48506  511.44
Papadakis Neighbors 158462  485.71  512.09
Nearest Row/Column Neighbors EESSHIACTEEEE teIo% = NG & WA/
Linear Trend | 16,238 4/5.59| 50344
Quadratic Trend 26,874 4270 459.25
Cubic Trend 5835 371.67 409.78

Model Comparison
Models and IC applied to Cochran 194/ data



Randomized Complete
Completely Random
Nearest Column Neighbors
Nearest Row Neighbors
Papadakis Neighbors

Nearest Row/Column Neighbors

Linear Trend

Quadratic Trend
Cubic Trend

Model

225923
| 215909
230,104
55,257
58,462
163,178
16,238
26,874
5,835

Block

497.06
495.68
497.65
485.06
485.7 |
486.44
SVSESE
42701
371.67

CRD Is a better model than RCB

CRMS  AIC | BIC

BV AAS
52057
524.03
O
512.09
Sl
503.44
4500
409.78



odel Is

Randomized Complete Block 225923 49706 52344
Completely Random ( 215909 495.68 520.59
Nearest Column Neighbors 230,104 497.65  524.03
Nearest Row Neighbors 155,257 48506  511.44
158462  485.71  512.09
Nearest Row/Column Neighbors| IEEESSHIACTEEEE te1o8% = O & WA/
Linear Trend | 16,238 4/5.59| 50344
Quadratic Trend 26,874 4270 459.25
Cubic Trend 5835 371.67 409.78

Papadakis Neighbors

All neighbor models that include rows improve upon CRD, and the
nearest row neighbor model is the best of the nearest neighbor
analyses.



odel Is

Randomized Complete Block 225923 49706 52344
Completely Random 215909 495.68 520.59
Nearest Column Neighbors 230,104 497.65  524.03
Nearest Row Neighbors 155,257 48506  511.44
Papadakis Neighbors 158462  485.71  512.09
Nearest Row/Column Neighbors EESSHIACTEEEE teIo% = NG & WA/
Linear Trend | 16,238 4/5.59| 50344
Quadratic Trend 26,874 4270 459.25
Cubic Trend 5835 371.67 409.78

All trend models improve upon CRD, with the most
improvement coming from a cubic trend.



| etters!

« Some Caveats

»  AIC/BIC are not test statistics. They
are not assigned p-values and should
not be considered tests of

significance. They should be for model
comparison only.

« T[hese tests won't tell us If the model
Is correct, or even If the model will
be correct for similar experiments.

Crop Code CHYCI
Crop Name Pyrethrum
Part Rated HEAD -
Rating Unit g
Number of Subsamples 1
Trt Treatment
No. Name 1
101 940.0 h
01
202 1590.0 de
3 A1 1045.0 gh
4 A2 965.0 h
5 F1 1930.0 ab
6 F2 1000.0 gh
7 L1 890.0 h
8 L2 1805.0 abc
9 FA1 1430.0 def
10 FA2 1750.0 bcd
11 LA1 1365.0 efg
12 LA2 1930.0 ab
13 LF1 1695.0 cd
14 LF2 1275.0 fg
15 LFA1 1995.0 a
16 LFA2 1620.0 cd
LSD P=.05 180.62
Standard Deviation 76.39
cv 5.26

Randomized Complete Block (RCB) AIC

Spatial AIC

497.0606
SPa 371.6681




Visualizing Fiela Fertility

Assume we have fit a statistical model to data

VWe generate plot level estimates using the fitted mod

el

To visualize fertility, we make predictions for a uniformity trial,
and replace each plot treatment with a single check treatment.

The predicted values then show plot values where dif

‘erences

are determined by field fertility estimated from other terms In

the model.



Inferred Fertility

C : 101 | (102 103 104 105 |[106 | 107 |[108
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401 g402 Q403 g404 Q405 p406 p407 |
1 3 2 9 9 16 Q2

s the ‘best’ model an unbiased estimate of spatial heterogeneity?

—




Simulations

* In this example, RMS, AIC or BIC tended to agree on the
choice of ‘best’ model. This will not always be the case.

- We simulate a series of uniformity trials, using the RCB
blan presented in Cochran 194/ and a square lattice

nased on the same treatment structure.

- WIill designing with incomplete blocks lead to a better model iIn more

experiments!



Simulated Experiments

Y

=

» We overlay trial maps onto yield monrtor data to

mimic potential spatial heterogener

Simulated Plot Means
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Trial Maps

Trimmed Yield Monitor Data
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|40 simulated uniformity

trials



Design = RCB Design = Lattice
s AC_BC

Design . - P
Column NN - ) _
NOWANIN | . _
Papadakis NN _ _ _
Row/Col NN | | _

Linear Trend - . | E _

Quadratic Trend B ) 9 5 ) 8
Cubic Trend A | 37/ | 28 124 |29 |23

Model Selection

Cochran 1947, RCB design, over |40 simulated uniformity trials. Table
shows the number of models selected as “best’” by each criteria
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s AC_BiC

CRD
Design
Column NN

Papadakis NI\
Row/Col NN

Linear Trend : R 3 N

Quadratic Trend B ) 9 5 ) 8
Cubic Trend A | 37/ | 28 124 |29 |23

4 4
| |
71
3 2
| |

Cubic trend model is almost always an improvement
on the 2-replicate RCB design. AIC chose a cubic
trend more often than other criteria.




| Deig=RCB | Desgn=latice
A5 AIC | BIC

i
| I | |
[ o e
| 1 1 3 2 5
I I
I I I T
| 2 9 °5 -T2
1271 137 128] 124 129 123

he original design was more often selected when the
experiment was executed as a simple lattice.



4
2
4
5

O
pS
U

Design _ _ D 4
Column NN - ] |
NOYWANIN | - )
Papadakis NN - _ 3
Row/Col NN | | |

Linear Trend - . | E _

Quadratic Trend B ) 9 5 ) 8
Cubic Trend A | 37/ | 28 124 |29 |23

Local (Nearest Neighbor) models were more likely to
be selected when the randomization was restricted by
incomplete blocking



Cochran and Cox
| 957/

Cochran,W. G.,, & Cox, G. M. (1957).
Experimental Design, Table 2.3 -
Lattice Square

Fach treatment appears exactly one or
zero times with any other treatment In
erther row or column (within
replicates).

Designs of this type are common
examples In the study of spatial models
(1.e. Federer 1998, Brownie 1993).




RCB 32010 49439 554.64
Row-Column Lattice 9575 40082 521.33
Column Neighbors 21.733 46583 52840
Row Neighbor 2.810 426.18 488.75
Papadakis Neighbors 4977 43790 5004/
Row/Column Neighbors 2589 42533 490.22
Linear Irend 25577 47850 543.39
Quadratic Trend 21,119 46529 537.13
Cubic Trend 19486 460.27 541.39

Model Comparison

Cochran and Cox 195/, RMS, AlC and BIC values for fixed
effect linear model.




Model

RCB

Row-Column Lattice
Column Neighbors
Row Neighbor
Papadakis Neighbors
Row/Column Neighbors

Linear Trend

Quadratic Trend
Cubic Trend

32.010

9575
21.733
2.810
4977
2.589
25577
21119
19.486

494.39
400.82
465.83
426.18
437.90
A908) 5o
478.50
465.29
460.27

BIC
554.64
VL | 5o
528.40
488.75
500.4/
490.22
543.39
SSvalis
541.39

RMS and AIC both select the row-column lattice as the best
model; BIC, which includes a larger penalty for parameters,
chooses the simple Nearest Row Neighbors model.



Simulated Lattice Experiments

* We repeat the uniformity simulations using a row-

column lattice.

Trimmed Yield Monitor Data Trial Maps

Treatment
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Kriged Plot Means
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BIC tends to prefer simpler models, Iin this case when the
designed experiment has many parameters.



Spatial Models and MET

» Multi-environment trials are common tools In
agricultural research to study treatment by

environment interactions.

» We use as example a set of data from the SDSU
AES Winter Wheat Variety Trials.




Yield/ Test Weight

| ocation A NN / RCB NN / Trend| Trend / Trend Trend / NN

| ocation B NN / RCB NN / Trend - NN / Trend

HelezliloR@M [rend/Trend| Trend/Trend  Trend /NN NN / NN
| ocation D Trend / NN NN / Trend NN /Trend  Trend /NN
L ocation E NN / RCB NN / Trend NN / NN NN / Trend
Location F - NN /Trend -/Trend  Trend /Trend

| ocation G NN / Trend NN / NN NN / Trend NN / Trend

Model Selection

Class of model (RCB, Trend or Nearest Neighbor) for 2
traits from 26 RCB trials of 4 replicates and 30 treatments.



Conclusion

Spatial analysis Is a potentially useful tool for understanding the outcome
of single field experiments.

Spatial analysis requires careful selection of the appropriate spatial model.

The same spatial model might not be applicable to repetitions of the
same experimental design, or to different measurements within the same
experiment.

Planning for spatial heterogenerty by using incomplete blocks will more

ikely allow us to retain our original design.
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