Using ARM to Plan Experiments Based on Required Precision

Steven R. Gylling, Ph.D. Gylling Data Management, Inc.

Plan Experiments to Have:

- A reasonable chance of distinguishing anticipated treatment differences
- The optimum number of replicates required to meet objectives
- An efficient experimental design and randomization for desired precision
- Cost-effective utilization of the available experimental area

Why is Planning Critical?

- Can reduce costs by selecting optimum number of replicates and samples
- Expected treatment differences are typically < 10%, and frequently < 5%, so small precision gains can help to:
 - Distinguish an actual treatment difference (reject null hypothesis H₀)
 - Strengthen evidence of no treatment diff.)
 (do not reject null hypothesis H₀)

ARM 10.2015 Power and Efficiency Planner

- Calculates "power" based on:
 - Estimated CV of key assessment (e.g. yield)
 - Number of replicates
 - Power = Level of certainty to detect "real" treatment effects (80% or 90%)
 - Observed Significance Level (e.g. 5%, 10%)
 - Mean Diff = estimated treatment effect, expressed as percentage of overall (grand) mean across treatments of key assessment

- "Lock at" to keep 3-4 columns constant
- Calculates table of possible values for "unlocked" columns (e.g. Rep or CV)
- Values entered by protocol writer are carried into trials created from protocol, conveying protocol expectations

Plan replicates to achieve required precision 5 treatments with CV=5, 10% mean diff.

Summary						
Reps	OSL=Significance					
7	1%	0.01				
5	5%	0.05				
4	10-15%	0.1-0.15				
3	20-30%	0.2-0.3				
2	40-50%	0.4-0.5				

Compare effect of significance level on minimum replicates for CV=6% vs. 10%

CV effect on min. detectable % mean difference at 5% OSL for 10 trt., 4 reps

Detectable Difference between Trt. Means				
CV	% Mean Diff.			
3	6.17% difference			
4	8.2% difference			
5	10.3% difference			
6	12.3% difference			
7	14.4% difference			

ARM 10.2015 Randomization Quality Review

Goal is to improve experiment precision:

- 1. Arrange replicates as squares, not strips
- 2. Equalize treatment distribution
 - Balance average distance from all other treatments
 - b. Balance "Edge effect" across treatments
- 3. Randomize all replicates

Arrange Replicates as Squares not Strips

"Optimum" is smallest surface-to-area ratio

Equalize Treatment Distribution

"Undesirable" layout of 7 treatments and 5 replicates in Randomized Complete Block:

- Trt. 6 in middle 3 columns of all reps
- Trt. 5 in right 2 cols for all but one plot

3a

4a

6a

7a

5a

Ιa

Uses "Average Distance of Treatment" Comparison (ATDC)

- van Es and van Es, "Spatial Nature of Randomization and Its Effect on the Outcome of Field Experiments", Agron J, 85:420-428 (1993).
- Comparison between treatments 1 and 2 is taken from 5 plots for each treatment.
- Measure the plot-to-plot distance for each plot containing treatment 1 to the paired plot within replicate containing treatment 2, for a total of 5 distances.
- ADTC for the treatment pair 1-2 is the average of the 5 distances.

Distances, Treatments 1-2

Average distance = 3 plots = 24 feet

for 8 foot wide plots

Unequal Treatment Distribution

- Average distance from 17.9 to 24.6
- Ranges from 11.9(T3,T6) to 34(T2,T5)
- Error variances for treatments may not be homogeneous

Unbalanced "Edge effect"

Treatment 1 occurs at edge 4 times,
 T2 and T3 at edge only 2 times

Balanced Treatment Distribution and Edge Effect

- Average distance from 21.3 to 24.4
- Distances range from 18.7 to 27.2
- "Edge effect" is balanced

Treatment						
Trt	At Edge	Ave Dist.	StDev	Min	Max	
1	2	22	2.15	20.4	25.5	
2	3	23.8	3.57	18.7	27.2	
3	3	24.4	1.76	22	27.2	
4	3	22.4	3.47	18.7	25.5	
5	3	22	3.4	18.7	27.2	
6	3	21.3	2.58	18.7	25.5	
7	3	22.7	2.56	18.7	25.5	

Randomize All Replicates

- This frame displays when a nonrandomized replicate is defined in Settings,
- Select "Randomize All Replicates" to follow recommended statistical practice

- Optional descriptive statistic printed on AOV Means Table report
- Lists, for each assessment column, the minimum number of replicates required to statistically separate treatment means based on Treatment P(F) and current significance level

Use for planning future trials

Post-hoc Power Analysis

- In example, LSD can distinguish 25% mean difference (largest existing difference is 18%)
- Current AOV Trt P(F) is 0.2970, so use 0.30+ significance level to separate treatment means
- Need 8+ replicates to reject null hypothesis at 0.05 significance

Crop Variety	CEZANNE		
Trt			
No.	24		
2	85.33 a		
3	81.67 a		
4	98.00 a		
5	95.33 a		
LSD P=.05 (% mean diff) Standard Deviation CV Grand Mean	21.808 (25%) 10.915 12.12 90.083		
Minimum Replicates (power = 80) Largest Mean Difference (% mean diff)	8 16.333 (18%)		
Treatment F Treatment Prob(F)	1.541 0.2979		

New ARM 10.2015 tools can help improve trial quality and efficiency:

- Plan appropriate number of replicates
- Improve quality of randomizations
- Analyze results to improve planning of follow-up experiments

ARM 10.2015 is available 4Q 2014